Filter Year: Topics: Author:
Home / Archive / 2020 - 1 (37) release Date 17.02.2020 / DEFINITION OF FUNDAMENTAL IRRIGATION OPERATORS, TAKING INTO ACCOUNT SOIL MOISTURE CONTENT VARIABILITY

Archive

Author: Lytov M. N.

DEFINITION OF FUNDAMENTAL IRRIGATION OPERATORS, TAKING INTO ACCOUNT SOIL MOISTURE CONTENT VARIABILITY

Topics: 06.01.02 Land Reclamation, Recultivation, and Land Protection

Abstract:

The purpose of the research is the development of an algorithm for determining the fundamental operators of irrigation control taking into account the variability of soil moisture reserves.
Materials and Methods. The basic tasks of irrigation control such as the need for irrigation and the technological parameters of this irrigation are considered as the fundamental operators. The main research methodological approaches are: the concept of a unified algorithmic construction for determining the main irrigation operators, solving the problem of taking into account the variability of soil moisture content at two levels – on the area and on the soil profile, refusal to use the average humidity of the active soil layer as the main requirement criterion for irrigation.
Results. The algorithm solving these problems on the basis of quantitative estimates of average humidity, moisture distribution over the soil profile and variability of moisture reserves over the irrigated area is proposed. The algorithm is presented by three sequentially organized calculation blocks, each of which solves an independent task in accordance with the above mentioned sequence. Computing procedures for solving the tasks in each of the considered algorithmically organized blocks are disclosed. The task based on average estimates of the active soil layer moisture content has a classical solution. The problem based on data on the layer-by-layer moisture distribution in soil profile is solved by sequentially evaluating the layer-by-layer data dispersion as well as the soil layer thickness with moisture below the threshold level.
Conclusions: the problem of using the differential precipitation distribution mode is solved on the basis of determining the variability of average estimates of soil moisture by area of the irrigated plot. The result of the algorithm solution is the determination of requirement for irrigation at the estimated date, as well as its main technological parameters, including the irrigation rate and the need for a differentiated precipitation distribution over the irrigated area.
Key words: algorithm; irrigation operators; variability; soil moisture; precision irrigation.

DOI: 10.31774/2222-1816-2020-1-30-51

For citation:
Lytov, M. N. Definition of fundamental irrigation operators, taking into account soil moisture content variability / M. N. Lytov // Scientific Journal of Russian Scientific Research Institute of Land Improvement Problems [Electronic resource]. – 2020. – 1(37). – P. 30–51. – Mode of access: http:www.rosniipm-sm.ru/en/archive?n=635&id=638. – DOI: 10.31774/2222-1816-2020-1-30-51.

References

1 Peng Y.Q., Xiao Y.X., Fu Z.T., Dong Y.H., Zheng Y.J., Yan H.J., Li X.X., 2019. Precision irrigation perspectives on the sustainable water-saving of field crop production in China: Water demand prediction and irrigation scheme optimization. Journal of Cleaner Production, vol. 230, pp. 365-377, DOI: 10.1016/j.jclepro.2019.04.347.

2 Zeiliger A.M., 2010. Tochnoe (differentsirovannoe) oroshaemoe zemledelie – tekhnologiya povysheniya effektivnosti orosheniya i snizheniya nagruzki na okruzhayushchuyu sredu [Precision (differentiated) irrigated agriculture – technology for improving the irrigation efficiency and reducing the influence on environment]. Sbornik nauchnylh dokladov VIM [Proc. of VIM], vol. 2, pp. 633-638. (In Russian).

3 Burunkaya M., 2019. Design and implementation of a new generation drip irrigation system for use in precision agriculture application. Journal of Polytechnic – Politeknik Dergisi, vol. 22, no. 3, pp. 785-792, DOI: 10.2339/politeknik.450792.

4 Balakai G.T., Vasiliev S.M., Babichev A.N., 2017. [The concept of a new generation irrigation machine for precision irrigation technology]. Nauchnyy Zhurnal Rossiyskogo NII Problem Melioratsii, no. 2(26), pp. 1-18, available: http:rosniipm-sm.ru/dl_files/udb_files/udb13-rec477-field6.pdf. (In Russian).

5 Churaev A.A., Yuchenko L.V., 2016. Pretsizionnoe oroshenie i sovremennye sredstva dlya ego realizatsii [Precision irrigation and modern means for its implementation]. Puti povysheniya effektivnosty oroshaemogo zemledeliya [Ways of Increasing the Efficiency of Irrigated Agriculture], no. 2(62), pp. 75-79. (In Russian).

6 Shchedrin V.N., Vasiliev S.M., Babichev A.N., Skidanov R.V., Podlipnov V.V., Zhuravel Yu.N., 2018. [Ground hyperspectral equipment for measuring vegetation indexes in agricultural crops precision irrigation problems]. Nauchnyy Zhurnal Rossiyskogo NII Problem Melioratsii, no. 1(29), pp. 1-14, available: http:rosniipm-sm.ru/dl_files/udb_files/udb13-rec527-field6.pdf. (In Russian).

7 De Lara A., Longchamps L., Khosla R., 2019. Soil water content and high-resolution imagery for precision irrigation. Maize yield. Agronomy, vol. 9, no. 4, pp. 174, DOI: 10.3390/agronomy9040174.

8 Terleev V.V., Mirshel V., Topaj A.G., Moiseev K.G., Togo I., Volkova Yu.V., Nikonorov A.O., Ginevsky R.S., Lazarev V.A., 2018. Skaniruyushchie vetvi gisterezisa vodouderzhivayushchey sposobnosti pochvy i ikh prognozirovanie s ispol'zovaniem matematicheskoy modeli dlya rascheta pretsizionnykh norm orosheniya sel'skokhozyaystvennykh kul'tur [Scanning branches of hysteretic soil water-retention capacity and their prediction using a mathematical model for calculating precision norms for crop irrigation]. Novye metody i rezul'taty issledovaniy landshaftov v Evrope, Tsentral'noy Azii i Sibiri: monografiya [Novel Methods and Results of Landscape Research in Europe, Central Asia and Siberia: Monograph]. Moscow, VNIIIA Publ., pp. 297-301. (In Russian).

9 Perea R.G., Garcia I.F., Arroyo M.M., Diaz J.A.R., Poyato E.C., Montesinos P., 2018. Multiplatform application for precision irrigation scheduling in strawberries. Agricultural Water Management, vol. 183, pp. 194-201, DOI: 10.1016/j.ag-wat.2016.07.017.

10 Solov’ev D.A., Kamyshova G.N., Terekhova N.N., Goryunov D.G., Vardumyan A., 2019. Tsifrovye tekhnologii v upravlenii orosheniem [Digital technologies in irrigation management]. Agrarnyy nauchnyy zhurnal [Agricultural Scientific Journal], no. 4, pp. 93-97, DOI: 10.28983/asj.y2019i4pp93-97. (In Russian).

11 Tishchenko A.P., 2016. Operativnoe upravlenie rezhimami orosheniya sel'skokhozyaystvennykh kul'tur po instrumental'nomu metodu [Operational management of crop irrigation regimes by the instrumental method]. Puti povysheniya effektivnosty oroshaemogo zemledeliya [Ways of Increasing the Efficiency of Irrigated Agriculture], no. 1(61), pp. 17-23. (In Russian).

12 vchinnikov A.S., Bocharnikov V.S., Fomin S.D., Bocharnikova O.V., Vorontsova E.S., Borodychev V.V., Lytov M.N., 2018. Optimum control model of soil water regime under irrigation. Bulgarian Journal of Agricultural Science, vol. 24, no. 5, pp. 909-913. 

13 Babichev A.N., Monastyrsky V.A., Ol’garenko V.I., Skidanov R.V., Podlipnov V.V., 2019. Sistema upravleniya shirokozakhvatnoy dozhdeval'noy mashiny krugovogo deystviya dlya pretsizionnogo orosheniya [The control system of a multiple center pivot sprinkling machine for precision irrigation]. Puti povysheniya effektivnosty oroshaemogo zemledeliya [Ways of Increasing the Efficiency of Irrigated Agriculture], no. 1(73), pp. 195-199. (In Russian).

14 Fursenko S.N., Yakubovskaya E.S., Volkova E.S., 2011. Avtomatizatsiya tekhnologicheskikh protsessov sel'skokhozyaystvennogo proizvodstva [Automation of Technological Processes of Agricultural Production]. Minsk, Information Center of the Ministry of Finance Publ., 280 p. (In Russian).

15 Mikhailenko I.M., Timoshin V.N., 2016. Optimal'noe upravlenie orosheniem posevov sel'skokhozyaystvennykh kul'tur [Optimal irrigation control of agricultural crops]. Melioratsiya i vodnoe khozyaystvo [Irrigation and Water Management], no. 6, pp. 34-38. (In Russian).

16 Kotov V.M., Sobolevskaya E.P., Tolstikov A.A., 2011. Algoritmy i struktury dannykh [Algorithms and Data Structures], Minsk, BSU Publ., 267 p. (In Russian).

17 Kruzhilin I.P. [et al.], 2007. Metodicheskie ukazaniya i normativy razrabotki sistem upravleniya ekologicheskoy ustoychivost'yu oroshaemykh agrolandshaftov [Methodological Guidelines and Standards for the Development of Control Systems of Environmental Sustainability for Irrigated Agricultural Landscapes]. Moscow, Russian Agricultural Academy Publ., 105 p. (In Russian).

18 Shabanov V.V., Zemlyanov Yu.M., 1990. Optimal'noe upravlenie polivami pri ekspluatatsii orositel'nykh sistem [Optimal Irrigation Control During Irrigation Systems Operation]. Moscow, Agropromizdat Publ., 56 p. (In Russian).

19 Allen R.G., Pereira L.S., Raes D., Smith M., 1998. FAO Irrigation and Drainage Paper No. 56. Crop Evapotranspiration (guidelines for computing crop water requirements). Rome, Food and Agriculture Organization of the United Nations, 326 p. 

20 Borodychev V.V., Lytov M.N., 2015. Algoritm resheniya zadach upravleniya vodnym rezhimom pochvy pri oroshenii sel'skokhozyaystvennykh kul'tur [An algorithm for solving problems of controlling soil water regime during crop irrigation of crop]. Melioratsiya i vodnoe khozyaystvo [Irrigation and Water Management], no. 1, pp. 8-11. (In Russian).

21 Borodychev V.V., Lytov M.N., 2019. Problemy optimal'nogo vodoobespecheniya soi v usloviyakh orosheniya [Problems of optimal water supply of soy under irrigation conditions]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie [Bull. of the Nizhnevolgskiy Agricultural University Complex: Science and Higher Professional Education], no. 2, pp. 39-49, DOI: 10.32786/2071-9485-2019-02-3. (In Russian).

PDF (975Kb)

ZIP (2458Kb)