Filter Year: Topics: Author:
Home / Archive / 2019 - 3 (35) release Date 15.08.2019 / AGENT-BASED MODELING IN AGRI- INDUSTRIAL COMPLEX: JUSTIFICATION OF RECLAMATION PARK IN SOUTHERN RUSSIA (overview)

Archive

Author: Voyevodina L. A.

AGENT-BASED MODELING IN AGRI- INDUSTRIAL COMPLEX: JUSTIFICATION OF RECLAMATION PARK IN SOUTHERN RUSSIA (overview)

Topics: 08.00.05 Economics and Management of National Economy

Abstract:

The aim of the research is to analyze domestic and foreign experience of agent-based modeling (AOM) application and to consider the prospects for its application in land reclamation, namely, for creating land-reclamation parks (MP). The specific feature of an AOM is the creation of a tool simulating real-world phenomena and taking into account the behavior of agents’ population with certain properties. Nowadays the development of the concept of creating MPs using the mechanism of public-private partnership requires consideration of the interests of a large number of parties involved. These interests can be often opposed, and successful cooperation is possible under conditions of satisfaction of all parties involved. The search for tools for developing mutually beneficial solutions on the economic issues of the MP functioning is really relevant. AOM can be the tool that will help make decisions that are favorable for all participants in MP projects. AOM in the field of economic and sociological knowledge has a fairly wide application, but in the agrarian economy AOM has not yet received a decent spread, although there are prerequisites for a theoretical breakthrough in this matter. The analyzed sources of information show that the AOM method can be successfully used in systems where there are persons who make certain decisions that do not always obey the general goal. Separate elements in the models discussed above should be used in the development of virtual models for the creation and operation of MPs. This method can be used to justify the MP in view of the fact that the latter includes a large number of farms, each of which has its own interests and is in unique environmental conditions.

Key words: agent, agent-based modeling, multi-agent modeling, agent-based approach, agriculture, land reclamation, reclamation park.

DOI: 10.31774/2222-1816-2019-3-188-208

For citation:
Voyevodina, L. A. Agent-based modeling in agri-industrial complex: justification of reclamation park in southern Russia / L. A. Voyevodina // Scientific Journal of Russian Scientific Research Institute of Land Improvement Problems [Electronic resource]. – 2019. – 3. – P. 188–208. – Mode of access: http:www.rosniipm-sm.ru/en/archive?n=603&id=617. – DOI: 10.31774/2222-1816-2019-3-188-208.

References:
1 Shchedrin V.N., Vasil’ev S.M., Kolganov A.V., Medvedeva L.N., Kupriyanov A.A., 2018. Meliorative Institutional Environment – Area of State Interests. Espacios, vol. 39, no. 12, pp. 28.
2 Shchedrin V.N., 2017. Sozdanie «meliorativnogo agrarnogo parka» na osnove resursosberegayushchikh tekhnologiy, al'ternativnykh istochnikov energii, mekhanizma gosudarstvenno-chastnogo partnerstva [Creating a "reclamation agrarian park" based on resource-saving technologies, alternative energy sources, the public-private partnerships mechanism]. Strategicheskie napravleniya razvitiya APK stran SNG: materialy XVI Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Strategic Directions of the Agro-Industrial Complex of the CIS Countries Development: Proc. of the XVI International Scientific-Practical Conference]. Novosibirsk, SFSCA RAS, vol. 2, pp. 163-165. (In Russian).
3 Medvedeva L.N., 2017. Nauchno-metodicheskoe obosnovanie sozdaniya meliorativnogo agrarnogo parka na yuge Rossii [Scientifically-methodical substantiation of the creation of reclamation agrarian park in the south of Russia]. Ekologiya i melioratsiya agrolandshaftov: materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii molodykh uchenykh [Ecology and Reclamation of Agrolandscapes: Proc. of the International Scientific-Practical Conference of Young Scientists]. Volgograd, Federal Research Center for Agroecology, Russian Academy of Sciences, pp. 143-147. (In Russian).
4 Bonabeau E., 2002. Agent-based modeling: Methods and techniques for simulating human systems. Adaptive Agents, Intelligence, and Emergent Human Organization: Capturing Complexity through Agent-Based Modeling: Arthur M. Sackler Colloquium of the National Academy of Sciences, held on October 4–6, 2001, at the Arnold and Mabel Center of Irvine, CA., vol. 99, suppl. 3, pp. 7280-7287.
5 Makarov V.L., Bakhtizin A.R., Sushko E.D., Borisov V.A., Roganov V.A., Vasenin V.A., 2016. Agent-oriyentirovannye modeli: mirovoy opyt i tekhnicheskie vozmozhnosti realizatsii na superkomp'yuterakh [Agent-based modelling: world experience and technical opportunities of supercomputers implementation]. Vestnik Rossiyskoy akademii nauk [Bull. of the Russian Academy of Sciences], vol. 86, no. 3, pp. 252-262. (In Russian).
6 Makarov V.L., Bakhtizin A.R., 2013. Sotsial'noe modelirovanie – novyy komp'yuternyy proryv (agent-orientirovannye modeli) [Social Modeling – a New Computer Breakthrough (agent-based modeling)]. Moscow, Economy Publ., 296 p. (In Russian).
7 Niazi M., Hussain A., 2011. Agent-based computing from multi-agent systems to agent-based models: a visual survey. Scientometrics, vol. 89, pp. 479-499.
8 Mas M., Flache A., Kozma B., Helbing D., 2010. Individualization as Driving Force of Clustering Phenomena in Humans. PLoS Comput. Biol., vol. 6(10), 10.1371/jour-nal.pcbi.1000959.
9 Nardini C., Barrat A., 2008. Who’s Talking First? Consensus or Lack Thereof in Coevolving Opinion Formation Models. Phys. Rev. Lett., vol. 100(15), 10.1103/PhysRevLett.100.158701.
10 Sichman J.S., 1998. DEPINT: Dependence-based coalition formation in an open multi-agents scenario. J. Artif. Soc. Soc. Simulat., vol. 1(2), 28 p., available: http:jasss.soc.surrey.ac.uk/1/2/3.html.
11 Bonabeau E., Dorigo M., Theraulaz G., 2000. Inspiration for optimization from social insect behavior. Nature, vol. 406(6791), pp. 39-42.
12 Szabo G., Fath G., 2007. Evolutionary games on graphs. Phys. Rep., vol. 446(4-6), pp. 97-216.
13 Holme P., Ghoshal G., 2006. Dynamics of networking agents competing for high centrality and low degree. Phys. Rev. Lett., vol. 96(9), 5 p.
14 Bowles S., Gintis H., 2004. The evolution of strong reciprocity: cooperation in heterogeneous populations. Theor. Popul. Biol., vol. 65(1), pp. 17-28.
15 Helbing D., Szolnoki A., Perc M., Szabo G., 2010. Evolutionary establishment of moral and double moral standards through spatial interactions. PLoS Comput. Biol., vol. 6(4), doi.org/10.1371/journal.pcbi.1000758.
16 Rauhut H., Junker M., 2009. Punishment deters crime because humans are bounded in their strategic decision-making. J. Artif. Soc. Soc. Simulat., vol. 12(3), pp. 1.
17 Cederman L.-E., 2003. Modeling the size of wars: From billiard balls to sandpiles. Am. Polit. Sci. Rev., vol. 97, pp. 135-150.
18 Raberto M., Cincotti S., Focardi S.M., Marchesi M., 2001. Agent-based simulation of a financial market. Phys. Stat. Mech. Appl., vol. 299(1-2), pp. 319-327.
19 Zhang J., 2005. Growing Silicon Valley on a landscape: an agent-based approach to high-tech industrial clusters. Entrepreneurships, the New Economy and Public Policy, pp. 71-90.
20 Kaihara T., 2003. Multi-agent based supply chain modeling with dynamic environment. Int. J. Prod. Econ., vol. 85(2), pp. 263-269.
21 Preist C., 1999. Commodity trading using an agent-based iterated double auction. Proceed. of the Third Annual Conference on Autonomous Agents. pp. 131-138.
22 Lebaron B., Tesfatsion L., 2008. Modeling macroeconomies as open-ended dynamic systems of interacting agents. Am. Econ. Rev., vol. 98(2), pp. 246-250.
23 Tesfatsion L., 2002. Agent-based computational economics: growing economies from the bottom up. Artif. Life, vol. 8(1), pp. 55-82.
24 Harrison J.R., Lin Z., Carroll G.R., Carley K.M., 2007. Simulation modeling in organizational and management research. Acad. Manag. Rev., vol. 32(4), pp. 1229-1245.
25 Onggo B.S., 2008. Parallel discrete-event simulation of population dynamics. Proc. of Winter Simulation Conference. Miami, FL, USA, pp. 1047-1054.
26 Makarov V.L., Bakhtizin A.R., Sushko E.D., 2016. Agent-orientirovannye modeli kak instrument aprobatsii upravlencheskikh resheniy [Agent-based models as a means for testing of management solutions]. Upravlencheskoe konsul'tirovanie [Administrative Consulting], no. 12(96), pp. 16-25. (In Russian).
27 Mansury Y., Kimura M., Lobo J., Deisboeck T.S., 2002. Emerging patterns in tumor systems: simulating the dynamics of multicellular clusters with an agent-based spatial agglomeration model. J. Theor. Biol., vol. 219(3), pp. 343-370.
28 Makarov V.L., Bakhtizin A.R., Sushko E.D., 2017. Agent-orientirovannaya model' dlya monitoringa i upravleniya realizatsiey bol'shikh proektov [Agent-based model for monitoring and managing the implementation of large projects]. Ekonomika i upravlenie [Economics and Management], no. 4(138), pp. 4-12. (In Russian).
29 Helbing D., Nagel K., 2004. The physics of traffic and regional development. Contemp. Phys., vol. 45(5), pp. 405-426.
30 Binder C.R., Hofer C., Wiek A., Scholz R.W., 2004. Transition towards improved regional wood flows by integrating material flux analysis and agent analysis: the case of Appenzell Ausserrhoden, Switzerland. Ecol. Econ., vol. 49(1), pp. 1-17.
31 Dia H., 2002. An agent-based approach to modelling driver route choice behaviour under the influence of real-time information. Transport. Res. C: Emerg. Tech., vol. 10(5-6), pp. 331-349.
32 Henein C.M., White T., 2005. Agent-based modeling of forces in crowds. Multi-agent and Multi-agent-Based Simulation. Berlin, Springer, pp. 173-184.
33 Batty M., 2003. Agent-based pedestrian modeling. In Advanced spatial analysis: the CASA book of GIS, 81 p.
34 Gatti D., Gaffeo E., Gallegati M., Giulioni G., Palestrini A., 2008. Emergent macroeconomics: an agent-based approach to business fluctuations. Berlin, Springer, 128 p.
35 Aoki M., Yoshikawa H., 2006. Reconstructing Macroeconomics: A Perspective from Statistical Physics and Combinatorial Stochastic Processes. Cambridge, Cambridge Univ. Press, 352 p. (Japan-US Center UFJ Bank Monographs on International Financial Markets).
36 Schreinemachers P., Berger T., 2011. An agent-based simulation model of human-environment interactions in agricultural systems. Environmental Modelling & Software, vol. 26(7), pp. 845-859.
37 Balmann A., 1997. Farm-Based Modelling of Regional Structural Change: A Cellular Automata Approach. European Review of Agricultural Economics, vol. 24(1), pp. 85-108.
38 Berger T., 2001. Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis. Agricultural Economics, vol. 25(2–3), pp. 245-260.
39 Parker D.C. [et al.], 2003. Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Review. Annals of the Association of American Geographers, vol. 93(2), pp. 314-337.
40 Kremmydas D., 2012. Agent based modeling for agricultural policy evaluation: A review, 19 p. (AUA Working Paper Series, no. 3).
41 Gallegati M., Richiardi M.G., 2009. Agent Based Models in Economics and Complexity. Encyclopedia of Complexity and Systems Science, New York, Springer, pp. 25.
42 Durlauf S.N., 1997. What Should Policymakers Know About Economic Complexity? Santa Fe Institute, 10 p.
43 Weisbuch G., Boudjema G., 2002. Dynamical Aspects in the Adoption of Agri-Environmental Measures. Modeling Complexity in Economic and Social Systems; edited by F. Schweitzer, New Jersey, London, Singapore, Hong Kong, World Scientific, pp. 245-272.
44 Kellermann K. [et al.], 2008. AgriPoliS 2.1 – Model Documentation. Technical Report, Halle, Saale, IAMO.
45 Lobianco A., 2018. RegMAS – Regional Multi Agent Simulator Overview (Version 1.3.0), available: https:sourceforge.net/projects/regmas/files/regmas/1.3.0/regmas_1.3.0.tgz/download.
46 Handayati Y., Simatupang T.M., Perdana T., Siallagan M.A., 2016. Simulation of Contract Farming Using Agent Based Modeling. Journal of Operations and Supply Chain Management, vol. 9, pp. 28-48.
47 Tzima F., Athanasiadis I.N., Mitkas P.A., 2007. Agent-based modelling and simulation in the irrigation management sector: applications and potential. Water Saving in Mediterranean Agriculture (WASAMED 2007). Options Mediterraneennes, vol. 56-2, pp. 273-286.
48 Barreteau O., Bousquet F., 2000. SHADOC: A multi-agent model to tackle viability of irrigated systems. Annals of Operations Research, vol. 94, pp. 139-162.
49 Feuillette S., Bousquet F., Goulven P.L., 2003. SINUSE: A multi-agent model to negotiate water demand management on a free access water table. Environmental Modelling & Software, vol. 18. pp. 413-427.
50 Becu N., Perez P., Walker A.O., Barreteau C.L., 2003. Page Agent based simulation of a small catchment water management in Northern Thailand: Description of the CATCHSCAPE model. Ecological Modelling, vol. 170, pp. 319-331.
51 Farolfi S., Hassan R.M., 2003. AWARE: A Decision Support Tool towards decentralized water management in South Africa. International Colloquium in Water Governance and Sustainable Development. Sousse (Tunisia).
52 Bars M.L., Attonaty J.M., Pinson S., Ferrand N., 2005. An Agent-Based Simulation Testing the Impact of Water Allocation on Farmers Collective Behaviours. Simulation, vol. 81(3), pp. 223-235.
53 Lansing J.S., Kremer J.N., 1993. Emergent properties of Balinese water temple networks: coadaptation on a rugged fitness landscape. American Anthropologist, vol. 95, pp. 97-114.
54 Janssen M.A., 2007. Coordination in irrigation systems: An analysis of the Lansing-Kremer model of Bali. Agricultural Systems, vol. 93(1-3), pp. 170-190.
55 Denisova S.V., Bakhtizin A.R., 2011. Agent-orientirovannaya model' integratsii organizatsionnykh kul'tur pri sliyaniyakh i pogloshcheniyakh kompaniy [Agent based modeling of integration of organizational cultures in mergers and acquisitions of companies]. Audit i finansovyy analiz [Audit and Financial Analysis], no. 6, pp. 316-323. (In Russian).
56 Bakhtizin A.R., Denisov M.Yu., Shakhov V.V., 2008. Primenenie agent-orientirovannogo podkhoda dlya issledovaniya rynka aviaperevozok [The use of an agent-based approach for the study of the air transportation market]. Federalizm [Federalism], no. 4(52), pp. 221-231. (In Russian).
57 Makarov V., Ayvazyan S., Afanas’ev M., Bakhtizin A., Nanavyan A., 2016. Modelirovanie razvitiya ekonomiki regiona i effektivnost' prostranstva innovatsiy [Modeling the development of regional economy and an innovation space efficiency]. Forsayt [Foresight], vol. 10, no. 3, pp. 76-90. (In Russian).
58 Makarov V.L., Bakhtizin A.R., Sushko E.D., 2015. Agent-orientirovannaya sotsio-ekologo-ekonomicheskaya model' regiona [An agent-oriented social-ecological-economic model of a region]. Natsional'nye interesy: prioritety i bezopasnost’ [National Interests: Priorities and Security], no. 3(288), pp. 2-11. (In Russian).
59 Makarov V.L., Ageev A.I., Zelensky V.A., Loginov E.L., 2013. Sistemnye osnovy resheniya upravlencheskikh zadach vzaimodeystviya fundamental'noy i prikladnoy nauki s proizvodstvennym sektorom kak osnovnoy faktor novoy industrializatsii Rossii [System framework for solving management problems of the interaction of fundamental and applied science with the production sector as the main factor of new industrialization of Russia]. Ekonomicheskie strategii [Economic Strategies], vol. 15, no. 2(110), pp. 108-117. (In Russian).
60 Makarov V., 2008. Ob ekonomicheskom razvitii i ne tol'ko v kontekste budushchikh dostizheniy nauki i tekhniki [On economic development and other issues in the context of future achievements in science and technology]. Voprosy ekonomiki [Economics Issues], no. 3, pp. 39-46. (In Russian).
61 Okrepilov V.V., Makarov V.L., Bakhtizin A.R., Kuzmina S.N., 2015. Primenenie superkomp'yuternykh tekhnologiy dlya modelirovaniya sotsial'no-ekonomicheskikh sistem [Application of supercomputer technologies for simulating socio-economic systems]. Ekonomika regiona [Economy of the Region], no. 2(42), pp. 301-312. (In Russian).
62 Makarov V.L., 2009. Obzor matematicheskikh modeley ekonomiki s innovatsiyami [Review of mathematical models of economics with innovations]. Ekonomika i matematicheskie metody [Economics and Mathematical Methods], vol. 45, no. 1, pp. 3-14. (In Russian).
63 Makarov V.L., Bakhtizin A.R., 2009. Novyy instrumentariy v obshchestvennykh naukakh – agent-orientirovannye modeli: obshchee opisanie i konkretnye primery [New tools in social sciences – agent-based models: a general description and specific examples]. Ekonomika i upravlenie [Economics and Management], no. 12(50), pp. 13-25. (In Russian).
64 Makarov V., Kleyner G., 2008. Ekonomicheskoe razvitie Rossii i problemy mikroekonomiki znaniy [Russia’s economic development and the problems of knowledge microeconomics]. Problemy teorii i praktiki upravleniya [Problems of Theory and Practice of Management], no. 2, pp. 8-22. (In Russian).
65 Makarov V.L., Bakhtizin A.R., Sushko E.D., 2013. Komp'yuternoe modelirovanie vzaimodeystviya mezhdu munitsipalitetami, regionami, organami gosudarstvennogo upravleniya [Computer simulation of interaction between municipalities, regions, government authorities]. Problemy upravleniya [Management Problems], no. 6, pp. 31-40. (In Russian).
66 Makarov V.L., Bakhtizin A.R., 2015. Sovremennye metody prognozirovaniya posledstviy upravlencheskikh resheniy [Modern methods of forecasting the consequences of administrative decisions]. Upravlencheskoe konsul'tirovanie [Administrative Consulting], no. 7(79), pp. 12-24. (In Russian).
67 Makarov V.L., Ayvazyan S.A., Afanas’ev M.Yu., Bakhtizin A.R., Nanavyan A.M., 2014. Otsenka effektivnosti regionov RF s uchetom intellektual'nogo kapitala, kharakteristik gotovnosti k innovatsiyam, urovnya blagosostoyaniya i kachestva zhizni naseleniya [The estimation of the regions’ efficiency of the Russian Federation including intellectual capital, characteristics of readiness for innovations, level of well-being and life quality of population]. Ekonomika regiona [Economy of the Region], no. 4(40), pp. 9-30. (In Russian).
68 Makarov V.L., Bakhtizin A.R., Vasenin V.A., Roganov V.A., Trifonov I.A., 2011. Sredstva superkomp'yuternykh sistem dlya raboty s agent-orientirovannymi modelyami [Means of supercomputer systems for working with agent-focused models]. Programmnaya inzheneriya [Software Engineering], no. 3, pp. 2-14. (In Russian).
69 Makarov V.L., Bakhtizin A.R., Sushko E.D., 2016. Situatsionnoe modelirovanie – effektivnyy instrument dlya strategicheskogo planirovaniya i upravleniya [Situational modeling – the effective tool for strategic planning and management]. Upravlencheskoe konsul'tirovanie [Administrative Consulting], no. 6(90), pp. 26-39. (In Russian).
70 Makarov V.L., 2002. O matematicheskikh modelyakh konkurentsii mezhdu predpriyatiyami [On mathematical models of competition between enterprises]. Ekonomicheskaya nauka sovremennoy Rossii [Economics of Modern Russia], no.1, pp. 5-9. (In Russian).
71 Sokhova Z.B., Red’ko V.G., Nagoev Z.V., 2015. Agent-orientirovannaya model' arendy sel'skokhozyaystvennykh ugodiy v regione [Agent-based model for leasing agricultural land in the region]. Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN [Bull. of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences], no. 6-2(68), pp. 174-182. (In Russian).

PDF (494Kb)

ZIP (60Kb)